
Fault Localization in Embedded
Control System Software

Kai Liang, Zhuofu Bai, Cenk Cavusoglu, Andy Podgurski,

Soumya Ray

Electrical Engineering and Computer Science

Case Western Reserve University, USA

6/4/2015 1

Motivation

• Embedded control systems are ubiquitous
– E.g. modern cars can have numerous systems

controlling the automatic transmission, antilock
brakes, airbags etc.
• “The wheels are primarily there to keep the computers from

dragging on the ground.”—Paul Saffo

• Many such systems are used in safety critical
situations

• When failures are observed, it is crucial to
promptly locate and remove the faults that
caused them

6/4/2015 2

Robotic Surgery Systems

• Our domain of interest

• Cyber-physical systems that
aid surgical procedures

• Benefits: less pain, shorter
recovery time, minimize
side effects

• Very complex control
software being used in a
highly uncertain, safety-
critical environment

6/4/2015 3

da Vinci surgical robot

Our Approach

• Develop statistical models of normal behavior of
such systems using simulators

– Often built to test controllers without putting them on
expensive hardware

• Identify variables responsible for “adverse and
anomalous” (A&A) events when system operates

• Trace these variables through control code to
determine faulty statements

– Challenge: controllers are intricate mathematical code

6/4/2015 4

Step 1: Build “Normal” Model

• Dynamic Bayesian Network (DBN)
• Conditional probability functions are regression

trees with linear Gaussian models at leaves
• General representation of nonlinear dynamics

• Structure and parameters learned from data
(trajectories generated from simulator)

• Added feature selection to sparsify the model
• Prior work (IAAI13) shows these are able to

adequately represent normal behavior and detect
A&A events

6/4/2015 5

DBN Example

6/4/2015 6

Pr(st+1 | st) = Pr(Vt+1 |Vt) = Pr(Vt+1

i |Vt
par(i))

i=1

n

Õ

Needle

x
Needle

x

Depth Depth

Torque

y
Torque

y

Needle
position

Z<5

Needle
direction

Y<2

Needle
position

X>3

Step 2: Identify Variables Causing
A&A Events

• An A&A event corresponds to a low-likelihood
state according to our DBN

• A low-likelihood state must mean that some state
variables have low likelihood

• We loop through each variable and check each
likelihood against a range of normal likelihoods
obtained from the training data
– If outside this range, mark this variable as “bad”

– In this step, the values of the variables are considered
(unlike coverage-based fault localization)

6/4/2015 7

Step 3: Identify Suspicious Statements

• In the control code, find the statements that
define the “bad” variables

• Using the controller’s PDG, rank statements so
that the nearest common ancestor to all those
statements has a high rank
– (i.e. are most suspicious)

• Idea: If faults are rare (assumed), the nearest
common ancestor could be a “common cause”
for all the “bad” variables seen

6/4/2015 8

Testbeds: Two RoS Systems

• Small Animal Biopsy Robot
(SABiR)
– Inject drugs/perform biopsies

on live small animal targets
with high accuracy

• Beating Heart Robot (BHR)
– Needle tracking heart motion

for robotic cardiovascular
procedures

• Simulation implemented in
MATLAB/Simulink for both
the robots

6/4/2015 9

Methodology

• We obtain 10 faulty controllers for each robot
– 1 real fault, 9 mutation faults for SABiR

– 10 mutation faults for BHR

• Baselines:
– Two coverage based strategies (PFiC and Ochiai)

– One value-based strategy (Elastic Predicates/ESP)

• All methods output ranked list of statements
according to suspiciousness
– We report the rank of the true faulty statement in this

list

6/4/2015 10

Fault Localization Results

SABiR 1
(Real)

2 3 4 5 6 7 8 9 10

FLECS 39 3 3 2 28 27 65 23 10 3

ESP 145 6 253 29 29 24 29 21 273 24

PFiC 166 166 162 162 162 163 166 162 163 166

Ochiai 163 163 163 163 162 163 166 162 163 166

6/4/2015 11

BHR 1 2 3 4 5 6 7 8 9 10

FLECS 1 18 2 2 18 18 1 9 2 10

ESP 25 47 4 51 54 27 4 3 114 29

PFiC 84 84 84 84 84 84 84 84 84 84

Ochiai 84 84 84 84 84 84 84 84 84 84

Conclusion and Limitations

• Our approach is specific to controller code
– Takes advantage of available simulators

– Tracks variable values needed for localization

– Uses the iterative calls to the code to help analysis

– Does well on this kind of code relative to baselines

• Limitations
– Assumptions and heuristics may not hold in all cases

– Results are affected by granularity of instrumentation

– Using the ranked list output likely does not reflect
possible real usage scenarios

6/4/2015 12

